Smooth Gevrey normal forms of vector fields near a fixed point

نویسنده

  • Laurent Stolovitch
چکیده

We study germs of smooth vector fields in a neighborhood of a fixed point having an hyperbolic linear part at this point. It is well known that the “small divisors” are invisible either for the smooth linearization or normal form problem. We prove that this is completely different in the smooth Gevrey category. We prove that a germ of smooth α-Gevrey vector field with an hyperbolic linear part admits a smooth β-Gevrey transformation to a smooth β-Gevrey normal form. The Gevrey order β depends on the rate of accumulation to 0 of the small divisors. We show that a formally linearizable Gevrey smooth germ with the linear part satisfies Brjuno’s small divisors condition can be linearized in the same Gevrey class. Formes normales Gevrey lisses de champs de vecteurs au voisinage d’un point fixe Résumé Nous étudions des germes lisses (i.e. C∞) de champs de vecteurs au voisinage d’un point fixe en lequel la partie linéaire est hyperbolique. Il est bien connu que les petits diviseurs sont “invisibles” dans les problèmes de linéarisation ou de mise sous forme normale lisses. Nous montrons qu’il en est tout autrement dans la catégorie Gevrey lisse. Nous montrons qu’un germe de champ de vecteurs α-Gevrey lisse ayant une partie linéaire hyperbolique au point fixe admet une transformation β-Gevrey lisse vers une forme normale β-Gevrey lisse où l’indice β dépend de la vitesse d’accumulation vers zéro des “petits diviseurs”. De plus, si le germe de champ de vecteurs, formellement linarisable, est Gevrey lisse et admet une partie linaire vrifiant la condition dioophantienne de Brjuno alors il est linarisable dans la mme classe Gevrey.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal Forms of Vector Fields on Poisson Manifolds

We study formal and analytic normal forms of radial and Hamiltonian vector fields on Poisson manifolds near a singular point.

متن کامل

A Study of the Rimmer Bifurcation of Symmetric Fixed Points of Reversible Diffeomorphisms

We prove that the study of Rimmer bifurcation of symmetric fixed points in two–dimensional discrete reversible dynamical systems can be achieved analysing either bifurcation of critical points of a symmetric Hamiltonian function or the bifurcation of symmetric equilibrium points for a nonconservative reversible vector field. We give the normal forms for generating functions of area preserving r...

متن کامل

A Parametrised Version of Moser’s Modifying Terms Theorem

A sharpened version of Moser’s ‘modifying terms’ KAM theorem is derived, and it is shown how this theorem can be used to investigate the persistence of invariant tori in general situations, including those where some of the Floquet exponents of the invariant torus may vanish. The result is ‘structural’ and works for dissipative, Hamiltonian, reversible and symmetric vector fields. These results...

متن کامل

Hypoellipticity: Geometrization and Speculation

To any finite collection of smooth real vector fields Xj in R we associate a metric in the phase space T ∗Rn. The relation between the asymptotic behavior of this metric and hypoellipticity of ∑ X j , in the smooth, real analytic, and Gevrey categories, is explored. To Professor P. Lelong, on the occasion of his 85th birthday.

متن کامل

Robust normal forms for saddles of analytic vector fields

The aim of this paper is to introduce a technique for describing trajectories of systems of ordinary differential equations (ODEs) passing near saddle-fixed points. In contrast to classical linearization techniques, the methods of this paper allow for perturbations of the underlying vector fields. This robustness is vital when modelling systems containing small uncertainties, and in the develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017